cos(arccos√3/2)
- √3/2
- 1/2
- π/6
- π/3
arccos(-1/2)
- π/3
- -π/3
- 2π/3
- - 2π/3
arccos1
- 0
- 1
- π/2
- π
arcsin1/2
- π/6
- π/3
- π/4
- π/2
arcsin(-√3/2 )
- 2π/3
- -π/3
- π/6
- -π/6
sin(arcsin√(2 )/2)
- √(2 )/2
- -√(2 )/2
- 1
- -1
arctg1
- π/4
- π/2
- 1
- 0
arctg(-√3/3)
- -π/6
- π/6
- √3/3
- -√3/3
arctg(tgπ/6)
- π/6
- √3/3
- √3
- π/3
arcctg(-1)
- -π/4
- π/4
- -3π/4
- 3π/4
arcctg√3
- π/6
- π/3
- π/2
- π/4
arccos(-√3/2 )+arcsin(-√3/2 )+arctg(-√3)
tg(arccos1/2+arcsin1/2-arctgo)
ctg(arcsin√3/2+arccos(-0,5)+2arctg(-1))
tg(arctg(-1/√3)+arctg1+arccos0+arctg1/√3)
4sin(1/5arccos(-√3/2 ))